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Abstract 

We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We 
simply add a second order axial sag to the base grazing incidence cone-cone telescope. 
The radius of curvature of the sag terms is the same on the primary surface and on the 
secondary surface. The design is optimized so that the on-axis image spot at the focal 
plane is minimized. The on-axis RMS spot diameter of two studied telescopes is less than 
0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 
telescopes. 

I. Introduction 

This x-ray telescope design study was prompted by our desire to find more practical and 
cheaper telescopes for the Constellation-X mission (CSX)’. The CSX observatory is 
comprised of 4 satellites. Each satellite has two telescopes on-board: the hard x-ray 
telescope (HXT) and the spectroscopic x-ray telescope (SXT)*. The baseline SXT 
telescope design is nested Wolter type 1 design (W). The entrance aperture diameter is 
1.6 m. The telescope axial focal length is 10 m. The mirrors can be up to 300 mm long. 
There are up to 167 mirror shells nested inside each other. The on-axis angular resolution 
requirement for the SXT telescopes is 15” HPD at 1 KeV. The field of view (FOV) of the 
SXT telescope is limited to 1.25 arc-minute. 

Over the years several x-ray telescope configurations have been proposed. Wolter3 
introduced paraboloid-hyperboloid type ldesigns. These designs have been widely used 
in x-ray astronomy. The W type 1 designs consist of paraboloidal primary mirror and 
confocal hyperboloidal secondary mirror. The telescope forms stigmatic on-axis image 
from infinite object. The telescope manufacturing errors always limit the on-axis image 
quality. This design has finite amount of coma4. Other large aberrations are the field 
curvature and fifth order oblique spherical aberration. VanSpeybroeck and Chase’ have 
performed through design study of W type 1 telescopes including the nested designs. 

Wolter-Schwarzschild6 (WS) designs offer the best image quality for narrow FOV 
applications. These designs are free of third order spherical aberration and coma. Chase 
and VanSpeybroeck’ have done the basic design study of these telescopes. The surfaces 
of the WS telescopes are complex functions of system parameters and are difficult to 
fabricate and test. 

Optical designs for cone-cone type 1 telescopes have been designed and The 
advantage of this design is its simplicity. Since the telescope axial profiles do not have 
curvature, the focusing power of the design is very limited. In case of the CSWSXT 
telescope, this aberration would consume large proportion of the resolution requirement. 



Werner" studied and designed several polynomial x-ray telescopes. He compensated the 
on-axis spherical aberration against oblique spherical aberration. The resulting designs 
have more uniform resolution across the field of view. These designs are good for 
applications where large FOV is required. 

Nariai 1 1 2 followed a similar approach. He designed a telescope consisting of 2 
hyperboloids. In his designs spherical aberration is used to compensate oblique spherical 
aberration and coma is also minimized. Harvey13 used advanced features of ZEMAX lens 
design software to optimize hyperboloid-hyperboloid telescope for solar applications. 
These designs are excellent choices for missions where large FOV (- 30 - 40 arc- 
minutes) is required. 

In this paper we introduce a new type of x-ray telescope. The cone-cone telescopes are 
easiest to fabricate and test. Unfortunately, these designs have very poor on-axis 
resolution. Our basic idea is to improve on-axis performance of the cone-cone design by 
introducing second order axial curvature to the surfaces of the cone-cone telescope. We 
also require that the curvature is the same both on the primary and secondary. The basic 
concept is shown in Figure 1. In Section I1 we present the basic equations for the design 
of cone-cone telescope. In Section I11 we introduce the surface equations of the Equal- 
Curvature (EC) telescope and show how these surfaces are derived from surfaces with 
purely spherical axial profiles. The derivation of basic parameters of the EC telescope is 
shown in Section IV. The equations include the derivation of an equation for the radius of 
curvature of the mirrors and show how it relates to basic system arameters. In Section V 
we introduce our analysis code (Optical Surface Analysis Code ), the surface equations 
of the OSAC code, and the principles we used to study the EC telescopes using the 
OSAC code. 

I! 

In Section VI we present our study results for 2 EC designs (#1 and #2). The design #1 
matches closely the size requirements of the CSWSXT outer shell. The radial height of 
this shell is 800 111111. The radial height of the design #2 is 200 mm. The grazing angles of 
this design are 4 times shallower than the grazing angles of the design #l. 

11. Design of Cone-Cone Telescope 

The cone-cone telescope is shown in Figure 1 .This design consists of a primary cone and 
secondary cone. The intersection plane of the cones defines the system optical properties. 
The radial height (h) at this intersection plane and the axial distance (L)  from this plane 
to the focal plane define the basic optical properties of the design. The third important 
design parameter is the grazing angle ( i ~ l )  incoming rays make with the surfaces. To 
optimize the telescope effective area, the grazing angle on the primary and the secondary 
are chosen to be equal. One needs also to select the axial lengths of the primary (L,) and 
secondary (L2) and the axial distances from the back of the primary to the intersection 
plane ( c ~ )  and from the intersection plane to the secondary mirror (~2 ) .  



Under these assumptions the design work is trivial. The surface equations of the primary 
(j=I) and secondary (j=2) can be expressed as: 

hj = h, - z j  tan(ijo). (1) 

If the grazing angles are identical on the surfaces, then the slope angle of the secondary is 
io2 = 3 io]. In the body centered coordinate system the radial heights of the surfaces are: 

hj = h, - z j  tan(ijo), (2 )  

where hlo and h02 are the radial heights of the surfaces at the axial midpoints of the 
surfaces. 

Since the cone-cone telescope does not have a second or higher order component on the 
surface equations, the design can not focus the rays in its radial cross-section. A 
collimated in-corning bundle of rays is bent towards the optical axis, but stays radially 
collimated. A ring of rays hitting the primary and secondary is focused to an on-axis 
point at different axial locations near the focal plane. The radial height of the image as a 
function the primary mirror radial height is: 

HiWge = (h, - hi - (L - &) sin(4i1,)) / cos(4i1,), (3) 

where L.0=h/tun(4ilo) is the axial distance from the surface intersection to the focus of 
rays that hit the primary-secondary intersection ring. The best focus location is chosen so 
that the focused energy on both sides of the focal plane is equal. This corresponds to 
primary mirror radial height 

where hlnla and hlnlin are the maximum and minimum radial heights of the primary 
mirror. 

Two parameters are needed to design a cone-cone telescope. We start with the L and io] 
parameters. The L parameter defines the axial distance from the focal plane to the 
intersection of the surfaces and the ilo parameter defines the grazing angle of the primary 
mirror. The radial height at the intersection of the surfaces is roughly: 

The derivation of exact equation for ho leads to second order equation. The solution is: 

- B + . J B ~  - AC 
h, = 

where A, B, and C are expressed as function of basic parameters L and ilo and 
dimensional parameters L, and C I .  The A, B, and C parameters are: 

A 9 



A = 1 - (1 - C O S ( ~ ~ , , ) ) ~  

1 
L1 

2 
B = (- + c, )  tan(i,,) - Lsin(4i1,)(1 - cos(4i1,) 

After ho is known, the mirror dimensions can be calculated from Eqs. (1) or (2) .  To avoid 
on-axis vignetting, the dimensional parameters L2 and c2 have to be chosen so that the on- 
axis rays intersecting the primary mirror will also intersect the secondary mirror. 

111. Surface Equations of Equal-Sag Telescope 

To improve the on-axis focusing capability of the cone-cone telescope, we add slight 
axial sag to the cone surfaces. For grazing incidence mirrors the sag is very small and can 
conveniently be approximated by using spherical axial profile. This profile is then rotated 
about the optical axis to produce the surface of revolution. A cross-sectional view of the 
resulting surfaces is illustrated in Figure 1. Assuming spherical cross-section and the 
same radius of curvature (R) on the primary and secondary, the surface equations of the 
primary mirror ( j = I )  and secondary mirror (j=2) in the body centered coordinate system 
of the cones are: 

hj-sph = hjo - Rcos(ijo) + , /R2 - ( z ~ - ~ ~ ~  + Rsin(ijo))2 

Since the radius of the spherical surface is very large compared to the axial coordinate, 
equation can be approximated as: 

Third and higher order terms in Zj-sph are dropped in the expansion. Equation (1 1) is 
simply the equation of a cone with a second order correction added to the cone surface. 
The design and analysis of EC telescopes is based on Eq. (1 1). The surface equations of 
the EC telescope can now be abbreviated by: 

hj =h i ,  +aIjzj +a2jczj 2 

where alj = -tan(i9), a2j =1/(2 cos3(i@)), and c = curvature of the surfaces (=I/R). 

IV. Design parameters for Equal-Sag Telescopes 

To design an EC telescope the coefficients of the surface equations need to be described 
in terms of more convenient system parameters. For x-ray telescopes best choices are the 
radial height at the surface intersection of the mirrors, the grazing angles at the 
intersection of the mirrors and the telescope axial length. There are 6 coefficients in the 
surface equations of the primary and secondary. As for the cone-cone telescope, we select 



the grazing angle ilo of the primary mirror and the axial focal length L of the telescope to 
be our input parameters. We also require that the grazing angles of the primary and 
secondary at the surface intersection of the primary and secondary mirror are equal. 
Under this condition ~ 2 j  = -tan (3 ilo) and a$ = 1/(2 cos(3 ilo)). The radial height ho at the 
surface intersection point and the curvature c of the surfaces are derived from the 
focusing requirement we set for the telescope. 

Curvature c can be solved from the minimum on-axis image requirement. To find the 
equations for the minimum on-axis image blur, approximate transverse ray equations are 
first derived for the system. The design is symmetric about the optical axis and only an 
arbitrary on-axis ray is traced and an equation for the radial component of the ray at the 
image plane is derived. The radial height (H) of an on-axis ray in terms of HO = (ho-L 
tan(#ilo)), ilo, R ,  and L is: 

25 1 8cL 
H = H ,  + z1 [-ilo - -i:, + cL(4 + 66i;,)] + cz: (--- + -). 

3 2 4 0  

Only the second order terms in z1 are kept in Eq. (13). Terms up to third order in i lo  are 
kept in the first order zl-coefficient and -1" and OLh order terms are kept in z12-coefficient. 
Eq. (1 3) is derived in Appendix A. 

Curvature c could be calculated from Eq. (13) by deriving first the radial image height 
RMS value and, then, solving the equation for curvature c. A simpler derivation is shown 
in this paper. Since Eq. (13) is quadratic in z l  the image radial height goes through 
minimum when the primary mirror axial coordinate zl  changes from its maximum value 
to its minimum value. Assuming that the minimum H value occurs at the primary mirror 
axial center point ( z l=  -LpD-cp), then, by taking the derivative of Eq. (13) with respect 
to z l  and solving for c, we find: 

Ll 34, (- + cl) 49 . 3  

210 - 6 4 0  2 
16L2 

+ 4L C =  
(14) 

In Eq.( 14) only the Znd order (112) terms are kept and also i lo  terms up to 3rd order are 
kept in the first part of the equation and up to 1'' order in the second part of the equation. 

Approximate solution for the ho parameter can be found from Eq. (13). Since Eq. (13) is 
quadratic, image radial height should reach 0 value when zll = -L1/4-c1 or z12= -3L1/4-c1. 
Using the first root we find for ho: 

25 1 8cL 
h, = tan(4il, ) + zll [ilo + -ifo - cL(4 + 66i:, )I + (- - -1. 

3 2 4 0  

V. Surface Equations of OSAC 

We used the Optical Surface Analysis Code (OSAC) to ray trace the resulting optical 
designs. In OSAC the surface equations of grazing incidence design are given in the 
Body Centered Coordinate system (BCC) shown in Figure 1 in the following format: 



where poi is the radial height at the axial midpoint of the surface, and Kj and Pj are 
constants. A second order correction term can be added to the base surface using 
OSAC’s Legendre polynomials. The second order Legendre term is: 

d2j 22 
sag. =- ((3--12 - 0, 

I 2 Lj 

where Lj is the length of the surface and d2j is constant. 

The OSAC parameters for cone surfaces can be simply calculated from Eq.( 1) by 
squaring the equation. 

The OSAC input parameters for the EC telescope can now be expressed using Eqs.( 16) 
and (17). The parameters are derived from Eqs. (1) and (12) by translating the origin of 
the coordinate to the BCC coordinate system of the surface. The results for the surface 
parameters are: 

L; 
d2i = - 

24Rcos3 ( i j o )  

‘ 2  j 

2 K j  = -A2 j (A , j  +-) 

pi = - 4 2 .  
I ’  

where 

L ,  
AI j  = h, f (’+ c j )  tan(ijo) - 

2 2 ~ c o s ~ ( i ~ , )  

-L + ci 
2 = tan(i 7 

R cos3 ( i jo  ) 

In Eqs. (21) and (22) the upper sign refers to primary mirror U = I )  and the lower sign 
refers to the secondary mirror (j=2). 

VI. Design and Optical Performance of Equal-Sag Telescope 



We have studied EC telescope designs that closely match the size of the Constellation-x 
SXT telescopes. For this paper we selected two designs from the nested set of 
Constellation-x telescopes. The basic dimensions and parameters are listed in Tables 1 
and 2 for both the EC and equivalent W telescopes. The radial heights of these designs at 
the primary-secondary intersection plane are 800 mm and 200 111111. The W designs are 
equivalent with the EC designs in the sense that they have the same radial height ho at the 
surface intersection point and the same axial focal length L. 

The shape of the axial profile of the EC telescope is purely second order (see Eq.( 17)). 
The axial sag varies from -d f l  to d2 along the optical axis from the center of the surface 
to the maximum or minimum axial value. The d2 coefficient is slightly larger for the 
secondary mirror. This is because the sag was designed so that the radius of curvature ( R )  
on both surfaces would be equal. The radii of curvature of the EC design #1 and #2 are 
1.98 km and 7.90km, respectively! 

In Figure 2 we plot radial height difference between the EC and W telescopes. At the 
primary-secondary intersection point there is no height difference. Moving towards the 
front of the primary or towards the back of the secondary, the height differences increase 
to 0.7 pm and 0.2 pm for the designs #1 and #2, respectively. 

The axial profiles of the EC designs are nearly spherical. The maximum radial height 
difference between EC equations (Eq.( 12)) and spherical profiles (Eq. (10)) is negligible 
since the third and higher order terms dropped in Eq.(12) would be very small. These 
terms are proportional to (z/R)" where R is many orders of magnitude larger than z. 

Ray trace results indicate that the derived equations do not perfectly predict the location 
of on-axis best focus. The focus location is off 4.7 pm and 5.7 pm for the EC designs #1 
and #2, respectively. The small error in the focus location is due to the approximations in 
the derivation of the curvature. 

In Figure 3 the RMS spot diameter is plotted as a function of half-field angle at gaussian 
focal plane for the telescopes. Dash curve plots the spot diameter for the EC design #I 
and the dash-dot curve plots the spot size for the W design #l. The W design provides 
slightly improved performance across the field. The on-axis RMS spot diameter of the 
EC telescope is 0.2 arc-seconds. The performance of EC design #2 and W design #2 is 
practically the same across the field-of view. The on-axis image diameter of the EC 
telescope is 0.05 arc-seconds. 

The RMS image diameters at the best focal surface are shown in Figure 4. The RMS spot 
diameters behave similarly. For both designs #1 and #2, W telescope slightly outperforms 
the EC telescope. If we were to take into account manufacturing tolerances and alignment 
requirements (half power diameter of 15 arc-second for Constellation-X telescopes), no 
differences in the telescope performance could be seen. 

VII. Conclusions 



The on-axis and off-axis optical performance of the EC telescopes is surprisingly good 
compared to equivalent W type1 telescope. For the grazing angles close to 1 degrees W 
designs are slightly better in terms of RMS spot diameter and for the gazing angles 
around 0.3 degrees or smaller there is no practically difference in the optical performance 
between the telescopes. 

The EC telescopes have several advantages over the W telescopes. They are easier to 
manufacture since the axial profiles are spherical. The polishing tools can be shaped to 
closely match the surface. The superpolishing of the spherical surface should be easier 
resulting in smoother surface quality and reduced microroughness. 

We believe that the EC designs can be very cost effective. Since the primary and 
secondary mirror have the same axial sag, a single mandrel could be used to replicate 
both primary mirror and secondary mirror segments for the CSNSXT telescopes. This 
would cut in half the mandrels needed for the project. 

The off-axis performance of the designs could be improved by not optimizing the on-axis 
image size as done in this study, but optimizing a specific off-axis image location. 
Another way of improving the off-axis performance is to let the curvature vary either on 
the primary or on the secondary. The resulting telescope would not be an EC design. We 
will explore these options in the future. 

Appendix A: Derivation of Radial Image Coordinate 

To derive the radial image coordinate we need to analytically trace a ray through the 
telescope and solve the equations for the image coordinate. Figure 1 illustrates the 
principle. A ray hits the primary at a point P. The coordinates and slope angle at this 
point are hl, z1, and il. The reflected ray makes an angle 2il with the optical axis. After 
the reflection the ray hits the secondary at a point S. The coordinates and slope at this 
point are h2, 22, i2. After the reflection the ray strikes the focal plane at point H .  
Assuming that the primary mirror (j=l)  and secondary mirror (j=2) have equal amount of 
curvature on their axial profiles, then, the surfaces can be expressed in the telescope 
coordinate system as: 

hi = ho +aZiczi. (Al) 

The coordinate system is centered on optical axis at the intersection plane of the mirrors. 
The ali and ~ 2 j  coefficients are defined in Eq.(12). The axial slope angle 4 of the surfaces 
is just the derivative of Eq. (Al) 

tan(ij) = -a,, - ~ U , ~ C Z ~ .  (A21 

To simplify the derivation we express the surface equations in parametric form as a 
function on quantity 
Aij = ij - i .  10 (A31 



where il is the slope angle of the primary mirror and ilo is the slope angle of the primary 
at the primary-secondary intersection point. We can solve Eq.(A2) for the primary mirror 
axial coordinate and similarly write an equation for the secondary mirror: 

(A41 czj =Aij(l--)+Ai2i. J 10 

The slope angle of the secondary i2o =3ilo. In Eq.(A4) we have expanded trigonometric 
ip terms and kept terms up to 3rd order in first order A4 term and first order in second 
order Ai j  The same approximations will be applied to all the equations presented below. 
The radial coordinates hj can be derived by substituting Eq.(A4) into &.( 12), keeping 
only 2nd order terms in Aij and expanding the coefficients. We get: 

. 2  
1 j o  
2 

1 chi = -Ai. ( i .  - i3 ) - Ai2 -. 
1 Jo Jo 5 3  

First, we need to derive for the traced ray the secondary mirror coordinates as a function 
of the primary mirror coordmates. Since we know the slope angle of the reflected ray we 
can write an equation: 

h, + z1 tan(2ii) = h2 + z2 tan(2i1). (A6) 

Deriving approximated equation for tan(2il) from Eq.(2) and substituting the resulting 
equation and Eqs.(A4) and (AS) into Eq.(6), we solve Eq.(6) for Ai2 

Ai: 
Ai2 = -Ail --4. 

110 

Substituting Eq. (A7) into secondary mirror equations (A4) and (AS) we find for 22 and 
h2 : 

9 ,  2 4 

2 4 0  
cz2 = -Ail (1 - -ilo) - Ai, - 

9 23 (A9) c(h2 -h0)  = Ai,(3ilo --i:o)+Ai:-. 
Tracing the ray from the secondary to image plane give us a equation for the radial image 

2 2 

coordinate: 
H = h 2  -(L-z,)tan(a), 

where a (=2Ai~-2Ai]) is angle between reflected ray after second reflection and optical 
axis. After deriving an equation for tan(a) and substituting Eqs. (A8) and (A9) into 
Eq.(A10), we get: 

47 R 8L 
H - Ho = Ail [ R(-ilo - -ifo) + L(4 + 64i:,) + Ai: [-- + -1, 

6 2 4 0  

where Ho=ho-L tan(4io~). Finally, solving Eq.(A4) for Ail and substituting into Eq. (A1 1) 
we get the radial image height as a function of primary mirror axial coordinate: 

25 1 8cL 
H = Ho + cZ,[R(-i,, --ifo) + L(4 + 66i;2,)] + c2z:(-- + -). 

3 2 4 0  
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